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Nanostructured titanium oxide films were fabricated by vacuum-plasma spraying. The microstructure

of the films was characterized with SEM, TEM, and XRD. The chemical state of the titanium oxide of the
films was analyzed using XPS. The results indicated that the vacuum-plasma sprayed nanostructured ti-
tanium oxide films possessed a corallike structure with small pores and agglomerated grains, which was
composed of nanosized particles. The main phases of the films were anatase and rutile, and their relative
content was determined by the plasma parameters. Low-valence titanium cations were also found in the
films.

Keywords anatase, nanostructured film, rutile, titanium oxide, through contrqlled hydrolysis of titanium butox.ide in an ethanol
vacuum-plasma spraying aqueous solution. The process of manufacturing spray powders

can be briefly described as follows: hydrolysis of titanium bu-

. toxide, direct precipitation followed by ethanol rinsing, and dry-

1. Introduction ing at 60 to 70 °C under a pressure of B0* Pa for 2 h. The
Nanostructured materials are of great interest in many appli-TorPhology of the powders was spherical or ellipsoidal with a

cations and have been the focus of extensive investigations in reSiZ€ ranging from 50 to 100 nm in diameter, as shown in Fig. 1.

cent years (Ref 1-3). Various techniques have been used t&9ure 2 shows the powders in an amorphous phase. The details

prepare nanostructured materials, such as the sol-gel proces§f the powder preparation are described in Ref 15.

the gas-condensation process, direct current (dc) reactive mag-

netron sputtering, radio frequency (rf) magnetron sputtering,

and electrochemical deposition (Ref 4-8). Recently, thermal 2.2 Preparation of Nanostructured Titanium Oxide

spraying has been used to prepare nanostructured materials. Film

Karthikeyan et al. developed a thermal spraying technique to

produce nanoceramic powders and deposits (Ref9). Tellkamp et  The A-2000 vacuum-plasma spraying equipment (Sulzer

al. sprayed a nanocrystalline Inconel 718 coating using a highyetco AG, Switzerland) was used to deposit nanostructured ti-

velocity oxygen fuel (HVOF) thermal spraying facility (Ref 10).  yanjum oxide films. The powders were fed with a Twin-System

Thermal spraying IS a new field for preparing nanostructured 10-V (Plasma-Technik AG, Switzerland). The plasma-spraying

materials compared with other methods (Ref 11). process was carried out in an inert gas atmosphere under low-

welr: g:ae cl)osrietzggnk: Vl’/‘;i:kdur:s_n?;;%gireri ?;an;unrg :ri(;ﬁcgr:i]zse {{Wessure conditions. Table 1 summarizes the experiment condi-
P Y P praying ions. The films were deposited on stainless steel substrates that

with scanning electron microscopy (SEM), transmission elec- were polished to a mirror finish
tron microscopy (TEM), x-ray diffraction (XRD), and x-ray )
photoelectron spectroscopy (XPS). Titania as a semiconductor
material, especially in nanostructured state, has wide applica
tion in fields of photocatalysis, photoelectric conversion, and
gas-sensing measurement (Ref 12-14), and as-prepared poro
nanostructured titanium oxide films should have potential appli-
cation in these fields.

2. Experimental Procedure

2.1 Preparation of the Spraying Powders

The spray powders used in this work were quite different
from conventional spraying powders. They were synthesized

Y. Zhu, M. Huang, J. Huang,andC. Ding, Shanghai Institute of Ce-
ramics, Chinese Academy of Sciences, Shanghai, 200050, Peoples Re-
public of China. Fig. 1 TEM micrograph of titanium oxide powders

Journal of Thermal Spray Technology Volume 8(2) June 198O



2.3 Structural Analysis of Nanostructured a JEM-200CX transmission electron microscope (Jeol, Tokyo,
Titanium Oxide Film Japan). The crystal structure of the films was measured with a
RAX-10 x-ray diffractometer (Rigaku, Tokyo, Japan). X-ray
The thickness of the film was monitored using Talystep photoelectron spectroscopy analyses were also carried out to ex-
equipment (Rank Taylor Hobson, Leicester, UK). The surface amine the chemical state of titanium oxide films with a PHI
morphology of the films was determined with an EPMA- 5000C ESCE system (Perkin-Elmer, USA).
8705QH22 electron probe analyzer (Shimadzu, Tokyo, Japan).
The samples were scraped from the substrates and analyzed with
3. Results and Discussion

3.1 The Microstructure of the Nanostructured
Titanium Oxide Films

Figure 3 presents the TEM micrographs of nanostructured ti-
tanium oxide films, which show that both films are composed of
irregular-shaped fine grains with particle sizes ranging from 10
to 120 nm. Figure 4 presents the surface morphologies of vac-
uum-plasma sprayed titanium oxide films, which show that the
nanostructured titanium oxide films possess a corallike structure
composed of small pores and fine grains.

Vacuum-plasma spraying is a rapid process. The residence
time of TiO, powders inside the plasma jet is less thafsl0
therefore, there is little time for Tigpowders to grow, and the
particles in the films remain nanostructured. Plasma-sprayed
TiO, powders slowed and cooled rapidly when they left the
plasma jet because of their low mass, so that a porous film rather
(d) than a dense film was formed during the plasma-spray process.
Nanostructured titania powders were decomposed to some ex-
tentin the plasma jet, and this also led to a porous nanostructured
film.

Relative Intensity
>

Table 1 Plasma-spraying parameters for nanostructured

film (1) and (I1)
Parameters Film (1) Film (I1)
} Plasma gas (Ar), flow rate, slpm 40 50
Plasma gas (), flow rate, slpm 6 0
y y v Carrier gas (Ar), flow rate, slpm 2 2
20 30 40 50 60 70 Current, A 500 700
Diffraction Angle 20 (degree) \oltage, V 58 33-35
Fig. 2 XRD patterns of titanium oxide powders and films. (a) Pow- g:;?;?]%g pr;:;ssure, mbar 35030 3530
ders. (b) Film (1). (c) Heat-treated film (l). (d) Film (). A, anatase; R, Translati(’)ns ced. mmis 500 50
rutile; S: stainless steel peed,

'|

Lo E R |
hm {}1] 100nm

Fig. 3 TEM micrograph of film (1) and film (11). (a) Film (1). (b) Film (I1)
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The morphologies of nanostructured titanium oxide films de- binding energies of the Ti(éﬁ) and Ti(2|§’2) of low-valence ti-
pend on the preparative conditions. At high power and with H tanium cations. The formation of low-valence titanium cations
contentin the plasma jet, the morphology of film (1) is relatively indicated the deoxidization of Tgpowders during the plasma-
smooth and dense and covered with small protuberances, aspraying process, and the deoxidization resulted in the forma-
shown in Fig. 4(a) and (b). However, at low power and without tion of oxygen vacancies in the films.
H, content in the plasma jet, the morphology of film (Il) appears
rough with fine grains piled up loosely, as showninFig. 4(c)and 3 3 The Crystal Structure of Nanostructured T;O
(d). The spraying power and the components of plasma gas Films
should be the main factors influencing the microstructure of the
films. The spraying power used for film (I) was 29 kW, whichis ~ Figure 2 shows the x-ray diffraction patterns of the powders
higher than that used for film (I1) (~22 kW). The plasma gas H and as-sprayed films. It can be seen that the amorphous state of
played an important role in the process of plasma spraying. Firstthe powders changed into anatase and rutile phases, which indi-
the addition of plasma ga&H|evated the Spraying power; sec- cated that CryStalline cores nucleated and grew during the proc-
ond, the plasma gas,ias beneficial for heat transfer between €ss of plasma spraying. The diffraction intensity of anatase
the p|asma jet and powders_ H|gher power and better heat tran@hase was similar to that of the rutile phase in film (|) However,

fer improved the me|ting state of powdersl ThUS, film (|) was in film (“), the diffraction intensity of anatase phase was SIIghtIy
smooth and dense relative to film (I1). higher than that of rutile phase, which indicates that the quantity

of anatase phase increased relative to rutile phase in film (Il).
) The XRD pattern of film (1) after heat treating at 250 to 300 °C
3.2 X-Ray Photoelectron Spectroscopy Analyses in atmosphere for 30 min is shown as curve cin Fig. 2. It can be
Figure 5 shows XPS spectra of the nanostructured titaniumseen that the diffraction intensity of film (I) had no apparent
oxide film. The binding energy peaks of Ti(2p) were regressed. change after heat treatment, however, the interplanar distance of

The results reveal that there were two different binding states ofheat-treated film (I) changed slightly compared with that of as-
titanium cations in the titanium oxide film. Peaks at 464.8 and prepared film (). Table 2 presents the interplanar distances de-
459.2 eV correspond to the binding energies of the ﬁ%?qmd termined in this work and from the Joint Committee on Powder
Ti(2p3/% of Ti** cations. Peaks at 461.8 and 457.4 eV were the Diffraction Standards (JCPDS) (Ref 16). From this table, it can

Fig. 4 SEM micrographs of vacuum-plasma sprayed titanium oxide films. (a) and (b), film (1). (c) and (d), film (1)
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crystal phase of the films was composed of anatase and rutile.
The microstructure of the films and the relative amounts of
anatase and rutile were determined by the plasma-spraying pa-
rameters. High power and better heat transfer of the plasma jet
led to smoother and higher density films, as well as more rutile
phase. Low-valence titanium cations were formed during the

-"E" plasma-spray process.
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4. Conclusions

15.

In this study, porous nanostructured titanium oxide films
were deposited by vacuum-plasma spraying. The fili® pos-

sessed a corallike structure with small pores and aggregateds.

grains, which were composed of nanosized particles. The main
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